Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Perception ; 52(7): 441-458, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37272064

RESUMO

Having two forward-facing eyes with slightly different viewpoints enables animals, including humans, to discriminate fine differences in depth (disparities), which can facilitate interaction with the world. The binocular visual system starts in the primary visual cortex because that is where information from the eyes is integrated for the first time. Magnetic resonance imaging (MRI) is an ideal tool to non-invasively investigate this system since it can provide a range of detailed measures about structure, function, neurochemistry and connectivity of the human brain. Since binocular disparity is used for both action and object recognition, the binocular visual system is a valuable model system in neuroscience for understanding how basic sensory cues are transformed into behaviourally relevant signals. In this review, we consider how MRI has contributed to the understanding of binocular vision and depth perception in the human brain. Firstly, MRI provides the ability to image the entire brain simultaneously to compare the contribution of specific visual areas to depth perception. A large body of work using functional MRI has led to an understanding of the extensive networks of brain areas involved in depth perception, but also the fine-scale macro-organisation for binocular processing within individual visual areas. Secondly, MRI can uncover mechanistic information underlying binocular combination with the use of MR spectroscopy. This method can quantify neurotransmitters including GABA and glutamate within restricted regions of the brain, and evaluate the role of these inhibitory and excitatory neurochemicals in binocular vision. Thirdly, it is possible to measure the nature and microstructure of pathways underlying depth perception using diffusion MRI. Understanding these pathways provides insight into the importance of the connections between areas implicated in depth perception. Finally, MRI can help to understand changes in the visual system resulting from amblyopia, a neural condition where binocular vision does not develop correctly in childhood.


Assuntos
Percepção de Profundidade , Córtex Visual , Animais , Humanos , Visão Binocular , Percepção Visual , Disparidade Visual , Imageamento por Ressonância Magnética , Estimulação Luminosa
2.
PLoS One ; 9(6): e100074, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24936974

RESUMO

An important advance in the study of visual attention has been the identification of a non-spatial component of attention that enhances the response to similar features or objects across the visual field. Here we test whether this non-spatial component can co-select individual features that are perceptually bound into a coherent object. We combined human psychophysics and functional magnetic resonance imaging (fMRI) to demonstrate the ability to co-select individual features from perceptually coherent objects. Our study used binocular disparity and visual motion to define disparity structure-from-motion (dSFM) stimuli. Although the spatial attention system induced strong modulations of the fMRI response in visual regions, the non-spatial system's ability to co-select features of the dSFM stimulus was less pronounced and variable across subjects. Our results demonstrate that feature and global feature attention effects are variable across participants, suggesting that the feature attention system may be limited in its ability to automatically select features within the attended object. Careful comparison of the task design suggests that even minor differences in the perceptual task may be critical in revealing the presence of global feature attention.


Assuntos
Atenção , Percepção Espacial , Córtex Visual/fisiologia , Percepção Visual , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Psicofísica , Adulto Jovem
3.
Ophthalmic Physiol Opt ; 34(2): 186-98, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24588533

RESUMO

PURPOSE: Perceiving binocular depth relies on the ability of our visual system to precisely match corresponding features in the left and right eyes. Yet how the human brain extracts interocular disparity correlation is poorly understood. METHODS: We used functional magnetic resonance imaging (fMRI) to characterize brain regions involved in processing interocular disparity correlation. By varying the amount of interocular correlation of a disparity-defined random-dot-stereogram, we concomitantly controlled the perception of binocular depth and measured the percent Blood-Oxygenation-Level-Dependent (%BOLD)-signal in multiple regions-of-interest in the human occipital cortex and along the intra-parietal sulcus. RESULTS: A linear support vector machine classification analysis applied to cortical responses showed patterns of activation that represented different disparity correlation levels within regions-of-interest in the visual cortex. These also revealed a positive trend between the difference in disparity correlation and classification accuracy in V1, V3 and lateral occipital cortex. Classifier performance was significantly related to behavioural performance in dorsal visual area V3. Cortical responses to random-dot-stereogram stimuli were greater in the right compared to the left hemisphere. CONCLUSIONS: Our results show that multiple regions in the cerebral cortex are sensitive to changes in interocular disparity correlation, and that dorsal area V3 may play an important role in the early transformation of binocular disparity to depth perception.


Assuntos
Imageamento por Ressonância Magnética/métodos , Disparidade Visual/fisiologia , Visão Binocular/fisiologia , Córtex Visual/fisiologia , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Estimulação Luminosa , Vias Visuais/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...